
J .  Fluid iMech. (1965), vol. 2 2 ,  part 2 ,  p p .  285-304 

Printed in Great Britain 

285 

A three-dimensional turbulent boundary layer 
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The purpose of this paper is to provide some possible explanations for certain 
observed phenomena associated with the mean-velocity profile of a turbulent 
boundary layer which undergoes a rapid yawing. For the cases considered the 
yawing is caused by an obstruction attached to the wall upon which the bound- 
ary layer is developing. Only incompressible flow is considered. 

$ 1  of the paper is concerned with the outer region of the boundary layer 
and deals with a phenomenon observed by Johnston (1960) who described it 
with his triangular model for the polar plot of the velocity distribution. This 
was also observed by Hornung & Joubert (1963). It is shown here by a first- 
approximation analysis that such a behaviour is mainly a consequence of the 
geometry of the apparatus used. The analysis also indicates that, for these 
geometries, the outer part of the boundary-layer profile can be described by a 
single vector-similarity defect law rather than the vector ‘wall-wake ’ model 
proposed by Coles (1956). The former model agrees well with the experimental 
results of Hornung & Joubert. 

In  92, the flow close to the wall is considered. Treating this region as an 
equilibrium layer and using similarity arguments, a three-dimensional version 
of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribu- 
tion with the pressure-gradient vector and wall-shear-stress vector and explains 
how the profile skews near the wall. The theory is compared with Hornung & 
Joubert’s experimental results. However at this stage the results are inconclusive 
because of the lack of a sufficient number of measured quantities. 

1. Outer flow Introduction 

Johnston (1960) plotted his experimental velocity profiles for a yawed boundary 
layer in polar form. At  a given position along the wall, the velocity vectors 
measured at various heights above the wall were drawn on a plane parallel to the 
wall from a single pole. He found that the vectors corresponding to the outer 
90 yo of the layer have their tips falling on one straight line. Hornung & Joubert 
(1963) carried out a more detailed experimental investigation of this phenomenon 
by yawing the boundary layer on a flat plate by a pressure field introduced by 
a circular cylinder standing on the plate. A typical plot of the velocity vectors 
is shown in figure 1, and it is seen that the triangular model of Johnston is con- 
firmed by the experimental results. This can be given an interesting physical 
interpretation. Relative to an observer who rides with the flow in the free stream, 
the outer part of the velocity profile in the yawed boundary layer lies in one plane 
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and this plane slips sideways and rotates relative to the wall. It is as if the outer 
flow can be represented by a two dimensional profile which rides and turns on 
top of a thin sublayer which separates this outer region from the wall. 

One would expect that such a phenomenon could be explained by examining 
some general properties of turbulent boundary layers. However, it is shown here 
that it is probably a consequency of the geometry of the apparatus used by 
Johnston and Hornung & Joubert. 

uo (Free stream velocity) 

I 

0 t Y 

FIGURE 1. Typical Johnston plot as measured by Hornung & Joubert. 
z is measured normal to the wall. 

Coles (1956) proposed that two-dimensional turbulent boundary layers have 
profiles which are expressible by the linear combination of two laws 

4% = f (zu,lv) + N z / @ ,  
where u is a velocity a t  distance x from the wall, u, is the friction velocity, v 
is the kinematic viscosity, 6 is the boundary-layer thickness, and ?r is a factor 
dependent on the upstream pressure gradient and wall-shear-stress distribution. 
The functions f and o are universal, these being the ‘law of the wall’ and ‘law 
of the wake’ respectively. This agreed well with experiment and Coles suggested 
from intuitive arguments that for three-dimensional layers, the expression 
could be modified to read u/u, = f(ZU,/V) + X W ( Z / S ) ,  
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where f is a vector which is in the direction of the wall shear stress and x is 'a. 
vector such that f(Su,/v) + xw(1)  is in the direction of the free-stream velocity 
uW The value of 7c depends on the pressure and wall-shear-stress field. 

This law did not apply to the experimental results of Hornung & Joubert. 
If the undisturbed upstream-velocity profile is two-dimensional, then, for the 
flow configurations tested, it  is shown that Coles' equation should be replaced by 

where $(x /S)  is the velocity-defect distribution of the undisturbed upstream- 
boundary-layer profile (divided by the local shear velocity). The vector II 
depends on the pressure field and wall-shear-stress field, and some features of 
this dependence are indicated. 

The experimental results of Hornung & Joubert are the most detailed to date 
and will be used exclusively in this paper except when stated otherwise. 

0 L, L 
FIGURE 2. Analysis of Johnston plot. 

Analysis 
The analysis applies for flow configurations similar to those used by Johnston 
and Hornung & Joubert. All the necessary nomenclature is defined in figures 2 
and 3. From figure 2 it can be seen that the Johnston triangle is valid so long as 
the ratio (uo - u)/(wo - v) is independent of x,  the distance from the wall. The aim 
of this analysis is ts show that (uo-u)/(wo-w) is a function of z and y alone 
for the flow configuration shown in figure 3. 

In this figure it is shown where the streamlines of a typical yawed profile 
originate. The following assumptions are made: 

(a)  The approaching velocity profile is unaffected until it  is fairly close to 
the rtvlinrler. Thin means t3hn.t, t,he vawing. is niidden and therefnre the mean-flow 
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inertia and pressure-gradient forces predominate over most of the boundary- 
layer thickness. Therefore the total head along a mean streamline will be approxi- 
mately constant for the relatively short length of streamlines considered. 

(b)  The approaching velocity profile is two-dimensional. 
(c) The main effect of the obstacle is to yaw the boundary layer sideways and 

not to thicken it appreciably. The distance over which yawing occurs is small 
compared with the length required to produce the approaching two-dimensional 

proaching velocity distribution 
(assumed unaffected) 

FIGURE 3. Geometry of system. 

boundary layer, and so entrainment of irrotational fluid into the top of the layer 
in the yawing region will be relatively small. With two-dimensional boundary 
layers, rapid thickening of the layers occurs in regions of rising pressure mainly 
because there is a rapid build up of slower moving fluid close to the wall. In  
three-dimensional layers this fluid is free to escape sideways giving another 
reason for only small changes in 8. This agrees with experiment. The above argu- 
ment also implies that the vertical component of velocity w will be unusually 
small and this agrees with the smoke-tunnel observations of Schwind (1962). 

The equations of motion for the mean-velocity field (neglecting shear stresses) 
are 

au au au l a p  
ax ay az p a x  

u-+v--+w-.  = ---, 
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u-+v-+w- = ---, 

-+-+- = 0. 

aw aw aw lap 
ax ay az pa2 

au av aw 
ax ay az 
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Let the order of magnitude of changes in x and y be L and z be S and the order 
of magnitude of u and v be U in the region yawing. Using the usual boundary- 
layer approximation that S < L (experiments indicate that this could be about 
0.1) the first two momentum equations have terms of order U2/L  while the 
third equation has terms of order (U2/L) (SIL). The equations reduce to 

au au au lap 
ax ay az pax 

u-+v-+w- = ---(x,y), 

av av av 1 ap 
ax ay az pay 

u-+v-+w- = ---(x,y), 

au au aw 
ax ay az 
-+-+- = 0, 

i.e. p is not a function of z. This result was confirmed by experiment. 
If only the outer region of the profiles is considered, it will be found that the 

velocity gradient au/& will not be of order (UlS), as in classical laminar-boundary- 
layer theory, but should really be of order ( U / L )  for the experiments considered. 
In turbulent boundary layers, it is usual for the velocity defect to remain small 
above a value of z /S  equal to about to 4. The analysis will be restricted to this 
region, and as a first approximation the velocity defect will be assumed small, 
i.e. ul-u/uo < 1. Using this approximation, and the fact that w is small (of 
order US/L by usual boundary-layer theory, but perhaps somewhat less because 
of assumption ( c ) ) ,  an order of magnitude analysis shows that the equations 
simplify to 

au au lap 
ax ay pax 

u-+v- = --- (x,y), 

av av iap 
ax a Y  pay 

u-+v- = ---(x , )  y) 

au av aw 
ax ay az 
-+-+--0. 

The pressure gradients will be those given by the free-stream velocity distribution 
U.~(X, Y) and vo(x, y), and so 

au au auo a%, 
ax ay O ax O ay ’ 
av av avo av u-+v- =u - + v  -O 
ax ay 0 ax 0 ay’ 

u-+v- = u -+v - 

au av aw 
ax ay az 
-+-+- = 0. (3) 

Thus there are three equations and three unknowns, these being u, v and w. 
Equations (1) and (2) are all that is necessary for determining u and v (except 
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for the boundary conditions), while equation (3) can be used for finding w 
once u and v are known. Equations (1) and (2) can be re-expressed in terms of the 
velocity defects Au = uo - u and Av = vo - v; thus 

Since the analysis is restricted to small velocity defects, all predominant terms 
will be contained on the right-hand side of these equations. It has been indicated 
that experiment shows that Auj6 = O(U/L) ,  and an order of magnitude argu- 
ment shows that the equations become 

If, for a given value of x ,  the initial velocity defect is Au, = u, - u, at  the 
upstream reference profile (see figure 3), then these equations become after 
non-dimensionalizing with Au, 

aU au aAu* aAu* 

av &J aAv* aAv* 

AU*--"+AV*-~+U __ +vo- - - 0, 
ax ay O ax aY 

AU* -0 + AV* -0 + Uo __ + Vo - - - 0, 
ax aY ax aY 

where Au* = AujAu, and Av* = Av/Au,. 
The boundary conditions for a given value of Z are 

and 1 Au* = 1 at x=O,  

Av* = O  at x = O  and y = O .  

The quantities uo, vo, auo/ax, auoj8y, av,/ax and avojay are prescribed by the free- 
stream flow, which is independent of the boundary-layer behaviour. Therefore 
all necessary information for finding Au* and Av* (equations (8), (9) and (10)) are 
independent of z, and so Au* and Av* are independent of z. Hence, as a first 
approximation, the equations of motion indicate that the Johnston triangle is 
valid.? It will be noted that the validity of the Johnston triangle depends on the 
linearity of (6) and (7) with respect to Au and Av. 

The above analysis also indicates that since Au* and Av* are independent of 
x then 

for the same value of x ,  where II'(x, y) is a vector depending on the free-stream 
flow and is independent of the conditions at the wall or the shape of the initial 
upstream profile. Since slight boundary-layer thickening probably occurs at 
places where the streatriline in the boundary layer diverged from the wall, then 

t .If the approximation used in reducing equations (4) and (6) to (6) end (7) had not 
been used, this deduction could not have been made. 

(11) uo - u = (u, - u,) II'(x, y) 
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as a first approximation, streamlines could be regarded as having a constant value 
of z/S. The effect of the vertical velocity can then perhaps be partly accounted for 
by applying equations (8) and (9) to surfaces of constant values of z/S, which 
will be approximately plane, but a t  a slight angle to the wall. Therefore an 

c i - 
I 

Free stream 
- 

- 
- - 

, I  

T I  / I  I / I  I 

improved approximation would be to say that equation (1 1) is applicable for the 
same values of z/S providing the boundary-layer thickening was slight (this is 
illustrated in figure 4). That is 

u, - u = ll’(x, y) $‘ (z/6),  where $’ (z /6)  = u, - ul, 

or 
u,-u a m  - u.1 -- - II(x, y) $(~/a),  where $(z/S)  = ~. 

UT uT1 

uT1 is the shear velocity appropriate to the upstream reference profile, and 
u, is the local shear velocity. II(x, y) is a factor somewhat analogous to the factor 
used by Coles in his ‘law of the wake’ model mentioned in the introduction. 

Discussion of resulk 

To illustrate the validity of equation (ll),  the velocity defects were plotted 
against one another for the same values of z (6 was fairly constant). Straight 
lines should be produced for small velocity defects. It can be seen from these 
plots (figure 5 )  and from the Johnston triangles, that the theory seems to be 
applicable for a much greater range of defects than was expected. The theory 
seems quite satisfactory, even for values of Aulu, as large as 0.4. This is 
partially explained by considering the solution to the equations for the simple 
case of flow along the plane of symmetry (see figure 4). 

19-2 
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For this case, equations (4) and ( 5 )  for a given value of (x/6) reduce to 

{ (2) - 2 (5) 1 = (2) (( g)z - 2 ($)) . 

Making the approximation in reducing equations (4) and ( 5 )  to equations (6) 
and (7),  the above equation becomes 

I t I I I I 1 I I 

Run no. 
0 5  
n 6  
A 7  

4- 8 
x g  
v 11 
0 12 

13 
f 14 
+ 22 
A 23 

I I I I I I I 1 I 
0 0.2 0.4 0.6 0.8 

(u,-u).u,/Iu0I2for run 10 

(a) 

0 

FIGURE 5. Comparison of velocity defects for same values of z. (a) Profiles upstream of 
the separation line; (b )  downstream profiles (theory not applicable since w is large). 

AulAu, has been calculated for a typical upstream profile in the tests of Hornung 
& Joubert for various pressure coefficients C, = (u: - ui)/u: using both equations 
( 13) and (14). For these tests, C, + 0.3 max. before separation was reached, and 
the percentage error in using equation (14) is only about 15 % where 

Au,/u, = 0-390 and z/b = +. 



A three-dimensional turbulent boundary layer 293 

For flow further from the wall and for smaller C,, the error is much less. The results 
of these calculations are shown in figure 6. This looks very promising, but a com- 
plete numerical solution to equations (8) and (9) is really required. AS yet this 
has not been done. 

I I 1 1 1 I I I I 1 

e 

Run no. 

16 
rn 17 

0 18 
0 19 

21 

A 
rn 

rn 

O( . 
080 

08 
e 

. 6 /  

A @ *  / 

0 

806 

/ 

/ 

/ 

Y p  I I 1 1 1 I I I 

0.2 0.4 0.6 0.8 1 .o 
(q,-u).uo//q,l% for run 10 

( b )  

For legend see facing page. 

Introduction 2. Inner flow 

Hornung & Joubert proposed that the 'law of the wall' applies to three-dimen- 
sional boundary layers in the same form as it does to two-dimensional layers 
up to the point where the boundary layer becomes yawed. This probably means 
that the law is applicable up to the apex of the Johnston triangle which has a 
value of ZUJV which ranges up to 150. The velocities are found to be close to  the 
wall-shear-stress direction up to this point. The experimental results for this law 
of the wall are shown in figure 7 for the various experimental runs. However, 
the law is not conclusive since direct measurements of shear stress were not 
carried out. Also only a few points from each run fall on the proposed curve. 
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/ 

I 

The values of the shear stress or local skin-friction coefficient were determined by 
plotting the magnitude of lui/luol (uo being the local free-stream velocity) 
against log (z luo\ /u) ,  that is on a Clauser chart (Clauser 1954). Assuming that the 

I 

4.0 

3.5 

3.0 

2.5 

2.0 
c 
4 
Y 

N 

1.5 

1 .o 

0.5 

0 0.5 1.0 

Au/Aul 

/ i l l  I 

FIGURE 6. Comparison of equations (14) and (13). 

usual law of the wall is applicable, then such a chart consists of a family of straight 
lines, each line corresponding to a different value of the local skin friction co- 
efficient C;. The equation of each line is 

and is illustrated in figure 8. I?; = ~~/ ( ipIu~12) ,  where T~ is the wall shear stress. 



A three-dimensional turbulent boundary layer 295 
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Z%lV 

FIGURE 7. The law of the wall of Hornung & Joubert. 

500 

0 

two-dimensional 
/ profile 0 

I /C; == 0,004 

H c ;  = 0.002 / 

’ , /c; = 0.001 

I 1 I 1 

10’ 102 lo3 104 lo5 
= luol lv 

FIGURE 8. Determining C; for smooth surfaces using Cleuser’s chart. 
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If this law of the wall is applicable for three-dimensional turbulent boundary 
layers, then the experimental points displayed on such a chart should fit into this 
‘Clauser scheme’, i.e. the points should lie on lines whose slope and position 
obviously fit into the above pattern. However, the slope of the experimental 
lines could not be accurately relied on because of the lack of the number of 
points forming a straight line. C; was therefore assumed to be that value indicated 
only by the position of the points. 

One reason for this lack of range of semi-logarithmic profile may be due to the 
yawing effect of the boundary layer, which really occurs well before the apex 
of the Johnston triangle. 

Analysis 
As a first step to improve the correlation of results, the following theory is 
proposed. 

Since the familiar law of the wall 

found for two-dimensional boundary layers can be arrived at from various 
phenomenological theories, which invariably end up by integration of a dif- 
ferential equation of the form 

7 a% 7,, 

p ax * p ’  
- - - e - & -  - 

then perhaps a three-dimensional law of the wall can be arrived a t  by an appro- 
priate three-dimensional interpretation of the terms in this equation. The term 
au/az is actually a rate of strain, and the shear-stress 7 will be assumed to act in a 
direction of the maximum rate of strain. By looking at a Johnston plot, the 
maximum rate of strain will occur along lines tangent to the curve described by 
the tips of the velocity vectors. 

As a first tentative approximation, it is assumed that the magnitude of the 
shear-stress ‘vector’ (which lies in the same direction as the maximum strain 
rate) is constant, and that the eddy viscosity E = kz (~ ,Jp )*  as it is for two-dimen- 
sional layers. Integration leads to 

provided u in this case is not the magnitude of velocity, but rather the length 
of arc on the curve of the Johnston plot. That is, the ‘developed’ velocity dis- 
tribution should be used. This point is amplified later. This arc length will be 
written as U. 

The above technique of plotting the profiles was carried out on a number of 
experimental runs of Hornung & Joubert, and it was found that the curves 
straightened out to give a much greater range of semi-logarithmic lines. A typical 
comparison between a magnitude plot and ‘developed ’ plot of the wall results 
is shown in figure 9, and it can be seen that this law appears now to be valid well 
beyond the apex of the Johnston triangle. 
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This looked encouraging and a number of such profiles of ‘developed’ U/lu,l 
versus log zlu,l/v were superimposed on the Clauser chart (see figure 10). How- 
ever, it can be seen that the slope of the semi-logarithmic lines of best fit definitely 
do not fit into the Clauser scheme of things. It was first thought that these 
deviations may have been due to the effects of surface roughness. However, 

+ z increasing z = 0 
. .  

+ z increasing z = 0 1-2 

1.0 

0.8 

0.6 

0 4  

0 1  1 10 
z (in.) 

FIGURE 9. Run 22 of Hornung & Joubert. (a) Compmison of magnitude 
and developed plot; (b) Johnston plot. 

using the techniques outlined by Perry & Joubert (1963) to determine the rough- 
ness function, negative values of this function were obtained for some profiles. 
This is not possible. The plate used by Hornung & Joubert may have had some 
slight roughening, but it appears that the answer lies in the proposition that the 
results do not really follow a semi-logarithmic law since pressure-gradient 
effects near the wall were strong. This possibility was borne out by sb more 
general analysis which takes into account the pressure-gradient effects, and is as 
follows. 

As in two-dimensional layers, mean-flow inertia forces close to the wall will 
be neglected so that there is a balance of pressure-gradient forces with shear- 
stress forces. The co-ordinate system used will be the same as in $1.  

Consider a prismatic element of sides ax, dy, and dz at distance z from the wall. 
The shear-stress rzv acts in the x-direction on the (x,z)-face. Using this sign 
convection, equilibrium of forces on the element give the following equations 

aP arzv arxz 

ax ay az 
-+-+- = 0, etc., 

rW = rux, etc. 

To give the analysis a stronger theoretical backing, this layer close to the wall 
will be considered an equilibrium layer in the sense used by Townsend (1961), 
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who developed the concept for two-dimensional layers. He showed that, very 
close to the wall, the local production and dissipation of energy predominate over 
other forms of energy, and that the flow structure at  a point depends mainly on 
local variables such as the local shear-stress 7 and distance x from the wall. This 

1 *4 I 1 I 1 1 1 1 l 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 ~ 1 1  I I I 1 1 1 1 1 1  I 1 I 1 1 1 1 ’ 1  1 1 l l lm 
I - 

Run no. 
1.2 - 0 5  

- 0. 22 

a 26 

A 24 

- 
- 
- 1.0 - 
- - 

0.8 - I 

- 
3 -  

- 
- 

0.6 - - 

- - 
- 0.4 - 
- - 
- 0.2 - 
- - 

0 I I I 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I 1 1 1 1 1 1 1 1  1 I f I I I I L  

led finally to the conclusion that a ‘mixing-length’ interpretation of the mean- 
flow energy equations was valid. Therefore the concept of eddy viscosity will 
be used, and the shear stresses will be assumed to be related to the strain rates by 

rxu = pc, {g + g] , etc. 

Here c,, c2, and c3 are three components of an eddy-viscosity tensor. 
Close to the wall, velocities vary very rapidly with z and the flow is nearly 

parallel to the wall (hence w = 0). Velocity variations with II: and y will be con- 
aidered to  be small compared with the variations with x .  Hence 

The force-equilibrium equations become 
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Integration of these equations with respect to z, noting that p = p ( x ,  y), gives 

The suffix 0 denotes conditions at the wall. 
Equation (15) does not appear to be of much use since the relationship between 

e2 and e3 is not known. One could perhaps assume the eddy viscosity to be an 
isotropic tensor, and it seems reasonable to make the hypothesis indicated earlier, 
which states that the maximum shear stress acts in the same direction as the 
maximum strain rate. From Townsend's hypothesis for two-dimensional 
layers, the eddy viscosity connecting these two quantities will depend on the 
local maximum shear-stress, z and p .  

Hence, perhaps for three-dimensional layers, 

and E is given by dimensional reasoning as 

E = kp4(7Zz + 7iZ)i 2. 

(7z2 + 7gz)* and {(du/dz)2 + (dv/dz)2}* are the maximum shear-stress and strain-rate 
magnitudes respectively, and k is a universal constant. 

Equation (17) becomes 

(7&.+7&)* = pikz (18) 

Substituting equation (16) into (18) gives 

(19) 

(7iz0 + 7i2,)* (which will be written as 7 0 )  is the magnitude of a vector T ~ ,  the shear 
stress a t  the wall, while { ( a p / 8 ~ ) ~  + ( 8 ~ / a y ) ~ } *  (which will be written as pol) is the 
magnitude of a pressure-gradient vector pa. .r,,,(8p/8x) + 7vz0(8p/8y) is obviously 
the scalar product of the two vectors pa and q, and will be written as 70pa cog 8 
where 0 is the angle between these vectors. Equation (19) therefore becomes 

Integrating the above equation and putting zuJv = z* leads to 

where ur = 2/(7o/p). 
The significant quantity in the expression for the law of the wall is therefore 

the length of arc on the Johnston plot. This verifies the intuitive assumption 
made earlier. 
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For small values of x * ,  experimental results indicate that U is closely equal 
to the magnitude of the velocity vector, and the boundary condition suggested 
by Townsend? for his two-dimensional equilibrium layers will be used. That is 

where A is a parameter influenced only by surface roughness effects and is 
constant for smooth walls. 

Therefore 

u - 'y' 1 (1 - 2 C O S 8  6) x* + ( g ) 2 z * ' p z *  + A .  
u, - k 0 z* 

Some interesting results of this equation should be noted. For small values of 
av/u:, the equation reduces to the simple semi-logarithmic profile and represents 
the case of a two-dimensional constant-stress layer. When 8 = r, equation (21) 
simplifies to 

which is equivalent to Townsend's two-dimensional linear stress layer in an 
adverse pressure gradient. With 8 = 0,  the pressure gradient is favourable. 
For the case of the adverse pressure gradient, large values of z* give 

the familiar half-power law of Townsend.$ This case also serves to verify the 
correctness of the sign convections used for 8. The shear-stress vector 2, is that 
force per unit area acting on the wall. The pressure-gradient vector a has the same 
sense as the force it produces on a fluid element, that is, in a sense opposite to 
Vp. The angle 8 is zero when 7, and a act in the same sense. 

Equation (21) is shown plotted in figure 11. 
The effect of varying the parameter av/@ is to cause the deviations (shown 

heavy) from the semi-logarithmic line to shift bodily up and down along the 
line. 

Range of validity of equation (21) 

An idea of the maximum possible range of validity of equation (21) can be de- 
duced from the Johnston plot. In  figure 12, it is shown how the experimental 
points for the wall flow blend in with the straight side of the 'triangle' (which 
corresponds with the points for the outer flow). Consider a prismatic element 
measuring dx by d y  and z1 units high. The shear force acting on the bottom face 

t Of course, physically lim (U/u,) = z* but this is in the region influenced by viscous 

$ Energy conveyed by turbulent diffusive movements has been neglected here where- 

z*+o 
effects, being outside the validity of equation (20). 

as Townsend took this into account by a small additional term. 
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z = 0 is assumed to act in the direction of the maximum strain rate at x = 0 
while, at z = zl, the appropriate direction is given by the tangent on the Johnston 
plot for z = zl. These two directions are indicated by the dotted lines. The equili- 
brium of the prismatic element is shown by the force polygon in the figure. 
The mnse of the shear-force vector is reversed a t  z = x1 since the top face of the 
element is being considered. The resultant shear force is of course in the direction 
of a since inertia forces have been neglected. 

25 

20 

3* 15 s 

10 

5 
lo1 102 lo3 104 

z* 

FI~URE 11. Three-dimensional law of the wall. 

Once the straight side of the Johnston plot is reached ( x  = z2) ,  no further change 
in the direction of the shear-force 7,dxdy can occur and so the force triangle 
will not close for values of z greater than z2. Since z2 is in the outer flow, the 
value of 7,dxdy should be small and this requires T~ to have the same direction 
as a. Experiments indicate that this is in general far from the truth and mean- 
flow inertia forces probably come into play before z exceeds the values corre- 
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FIGURE 12. Equilibrium of fluid element. 
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sponding to the straight side of the Johnston plot. At best equation (21) cannot 
be valid for values of z outside the curved portion of the plot or what could be 
referred to as the 'skewing region'. 
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Plotting of velocity profiles and discussion 

For given values of a and 8, a modified Clauser chart oan be plotted giving 
a family of curves for various values of C; and the appropriate ‘developed’ 
experimental profiles superimposed on this chart to see if it fits this modified 
scheme. This was done for three profiles. However, the pressure gradients had 
not been measured very accurately, and so Hornung & Joubert’s results for a 
were assumed to be that given by the potential flow theory around a circular 
cylinder in an infinite air stream. The experimental profiles are shown in figures 
13,14 and 15. 

In  figure 13, the results for run 5 are shown and i t  can be seen that the experi- 
mental points follow the Clauser line fairly well but appear to follow the modified 
theory somewhat better. The maximum possible range over which the theory is 
valid is not very great but run 5 is fairly close to the separation line and here 
mean-flow inertia forces could be high. Hornung & Joubert’s plot of the wall 
streamlines show a high curvature near the separation line. 

In  figure 14 the results of run 14 are shown and here mean-flow inertia forces 
should be low since the profile is far from the separation line. It can be seen that 
the experimental points follow the modified theory over a very large range of 
x (  uol/v. However, they also appear to follow the Clauser line equally we11 between 
the same limits. 

In  figure 15 the results of run 22 are shown. Here mean-flow inertia forces are 
definitely high since this is very close to the separation line. Also pressure- 
gradient forces are high. The modified theory follows the experimental points 
over only a small range. However, an important observation here is that the 
value ofC;deduced from the modified theory is considerably different from that 
which would be deduced from the Clauser line. 

All experimental results could be made to fit the theory much better if the value 
of a was adjusted to fit the large bumps in the plots. However, the variation in 
a necessary would be a factor of order 2 to 5. In  any case, too many degrees of 
freedom of variables would exist to make any deduction worth while if a was 
allowed to vary. The results definitely indicate that more accurate measurements 
of pressure gradient are necessary, while the shear stresses should be measured 
directly with a hot-wire anemometer. The theory shows some use if only to act 
as a guide for future research. 
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